

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pypuppetdb 0.1.0 documentation

Welcome to pypuppetdb’s documentation!

Note

This is a very new project and still changing at a rapid pace. As such the
only documentation currently available is the API documentation and a brief
Getting Started guide. Once this settles down tutorials and other documentation
will be added over time.

Getting started

The quickstart should get you up and running with pypuppetdb and familiarise
you with how this library works.

	Quickstart
	Connecting

	Nodes

	Facts

	Resources

	SSL

API Documentation

This part of the documentation focusses on the classes, methods and functions
that make up this library.

	Developer Interface
	Lazy objects

	Main Interface

	API objects

	Types

	Errors

	Utilities

Indices and tables

	Index

	Search Page

 Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pypuppetdb 0.1.0 documentation

Quickstart

Once you have pypuppetdb installed you can configure it to connect to PuppetDB
and take it from there.

Connecting

The first thing you need to do is to connect with PuppetDB:

>>> from pypuppetdb import connect
>>> db = connect()

Nodes

The following will return a generator object yielding Node objects for every
returned node from PuppetDB.

>>> nodes = db.nodes()
>>> for node in nodes:
>>> print(node)
host1
host2
...

To query a single node the singular node() can be used:

>>> node = db.node('hostname')
>>> print(node)
hostname

Node scope

The Node objects are a bit more special in that they can query for facts and
resources themselves. Using those methods from a node object will automatically
add a query to the request scoping the request to the node.

>>> node = db.node('hostname')
>>> print(node.fact('osfamily'))
osfamily/hostname

Facts

>>> facts = db.facts('osfamily')
>>> for fact in facts:
>>> print(fact)
osfamily/host1
osfamily/host2

That queries PuppetDB for the ‘osfamily’ fact and will yield Fact objects,
one per node this fact is known for.

Resources

>>> resources = db.resources('file')

Will return a generator object containing all file resources you’re managing
across your infrastructure. This is probably a bad idea if you have a big
number of nodes as the response will be huge.

SSL

If PuppetDB and the tool that’s using pypuppetdb aren’t located on the same
machine you will have to connect securely to PuppetDB using client certificates
according to PuppetDB’s default configuration.

You can also tell PuppetDB to accept plain connections from anywhere instead
of just the local machine but don’t do that.

	Pypuppetdb can handle this easily for you. It requires two things:

	
	Generate with your Puppet CA a key pair that you want to use

	Tell pypuppetdb to use this keypair.

Generate keypair

On your Puppet Master or dedicated Puppet CA server:

$ puppet cert generate <service_name>

Once that’s done you’ll need to get the public and private keyfile and copy
them over. You can find those in Puppet’s $ssldir, usually
/var/lib/puppet/ssl:

	private key: $ssldir/private_keys/<service_name>.pem

	public key: $ssldir/ca/signed/<service_name>.pem

Configure pypuppetdb for SSL

Once you have those you can pass them to pypuppetdb’s connect():

>>> db = connect(ssl_key='/path/to/private.pem', ssl_cert='/path/to/public.pem')

If both ssl_key and ssl_cert are provided pypuppetdb will automatically
switch over to using HTTPS instead.

By default pypuppetdb will also verify the certificate PuppetDB is serving.
This means that the authority that signed PuppetDB’s server certificate, most
likely your Puppet Master, must be part of the trusted set of certificates for
your OS or must be added to that set. Those certificates are usually found in
/etc/ssl/certs on Linux-y machines.

For Debian, install your Puppet Master’s certificate in
/usr/local/share/ca-certifiactes with a .crt extension and then run
dpkg-reconfigure ca-certificates as per
/usr/share/doc/ca-certificates/README.Debian. This of course requires the
ca-certificates package to be installed.

If you do not wish to do so or for whatever reason want to disable the
verification of PuppetDB’s certificate you can pass in ssl_verify=False.

 Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pypuppetdb 0.1.0 documentation

Developer Interface

This part of the documentation covers all the interfaces of PyPuppetDB.
It will cover how the API is set up and how to configure which version of
the API to use.

Lazy objects

Note

Reading in the response from PuppetDB is currently greedy, it will read in
the complete response no matter the size. This will change once streaming
and pagination support are added to PuppetDB’s endpoints.

In order for pypuppetdb to be able to deal with big datasets those functions
that are expected to return more than a single item are implemented as
generators.

This is usually the case for functions with a plural name like
nodes() or facts().

Because of this we’ll only query PuppetDB once you start iterating over the
generator object. Until that time not a single request is fired at PuppetDB.

Most singular functions are implemented by calling their plural counterpart
and then iterating over the generator, immediately exhausting the generator
and returning a single/the first object.

Main Interface

What you’ll usually need to do is use the connect() method to set up a
connection with PuppetDB and indicate which version of the API you want to
talk.
.. autofunction:: connect

API objects

The PuppetDB API is versioned. We currently have a v1, v2 and v3.

In order to work with this structure PyPuppetDB consists of a BaseAPI class that factors out identical code between different versions.

Every version of the API has its own class which inherits from our
BaseAPI.

	
pypuppetdb.API_VERSIONS

	dict of int:string pairs representing the API version
and it’s URL prefix.

We currently only handle API version 2 though it should be fairly easy to
support version 1 should we want to.

BaseAPI

	
class pypuppetdb.api.BaseAPI(api_version, host=u'localhost', port=8080, ssl_verify=True, ssl_key=None, ssl_cert=None, timeout=10)[source]

	This is a Base or Abstract class and is not meant to be instantiated
or used directly.

The BaseAPI object defines a set of methods that can be
reused across different versions of the PuppetDB API. If querying for a
certain resource is done in an identical fashion across different versions
it will be implemented here and should be overridden in their respective
versions if they deviate.

If ssl is set to True but either ssl_key or ssl_cert are None this will raise an error.

When at initialisation api_version isn’t found in API_VERSIONS this will raise an error.

	Parameters:	
	api_version (int) – Version of the API we’re initialising.

	host (string) – (optional) Hostname or IP of PuppetDB.

	port (int) – (optional) Port on which to talk to PuppetDB.

	ssl_verify (bool) – (optional) Verify PuppetDB server certificate.

	ssl_key (None or string representing a filesystem path.) – (optional) Path to our client secret key.

	ssl_cert (None or string representing a filesystem path.) – (optional) Path to our client certificate.

	timeout (int) – (optional) Number of seconds to wait for a response.

	Raises:	ImproperlyConfiguredError

	Raises:	UnsupportedVersionError

	
_query(endpoint, path=None, query=None, order_by=None, limit=None, offset=None, include_total=False, summarize_by=None, count_by=None, count_filter=None)[source]

	This method actually querries PuppetDB. Provided an endpoint and an
optional path and/or query it will fire a request at PuppetDB. If
PuppetDB can be reached and answers within the timeout we’ll decode
the response and give it back or raise for the HTTP Status Code
PuppetDB gave back.

	Parameters:	
	endpoint (string) – The PuppetDB API endpoint we want to query.

	path (string) – An additional path if we don’t wish to query the bare endpoint.

	query (string) – (optional) A query to further narrow down the resultset.

	order_by (bool) – (optional) Set the order parameters for the resultset.

	limit (int) – (optional) Tell PuppetDB to limit it’s response to this number of objects.

	offset (string) – (optional) Tell PuppetDB to start it’s response from the given offset. This is useful for implementing pagination but is not supported just yet.

	include_total – (optional) Include the total number of results

	summarize_by (string) – (optional) Specify what type of object you’d like to see counts at the event-counts and aggregate-event-counts endpoints

	count_by (string) – (optional) Specify what type of object is counted

	count_filter (string) – (optional) Specify a filter for the results

	Raises:	EmptyResponseError

	Returns:	The decoded response from PuppetDB

	Return type:	dict or list

	
_url(endpoint, path=None)[source]

	The complete URL we will end up querying. Depending on the
endpoint we pass in this will result in different URL’s with
different prefixes.

	Parameters:	
	endpoint (string) – The PuppetDB API endpoint we want to query.

	path (string) – An additional path if we don’t wish to query the bare endpoint.

	Returns:	A URL constructed from base_url() with the apropraite API version/prefix and the rest of the path added to it.

	Return type:	string

	
base_url[source]

	A base_url that will be used to construct the final
URL we’re going to query against.

	Returns:	A URL of the form: proto://host:port.

	Return type:	string

	
metric(metric)[source]

	Query for a specific metrc.

	Parameters:	metric (string) – The name of the metric we want.

	Returns:	The return of _query().

	
total[source]

	The total-count of the last request to PuppetDB
if enabled as parameter in _query method

:returns Number of total results
:rtype int

	
version[source]

	The version of the API we’re querying against.

	Returns:	Current API version.

	Return type:	string

v2.API

	
class pypuppetdb.api.v2.API(*args, **kwargs)[source]

	Bases: pypuppetdb.api.BaseAPI

The API object for version 2 of the PuppetDB API. This object contains
all v2 specific methods and ways of doing things.

	Parameters:	**kwargs – Rest of the keywoard arguments passed on to our parent BaseAPI.

	
_query(endpoint, path=None, query=None, order_by=None, limit=None, offset=None, include_total=False, summarize_by=None, count_by=None, count_filter=None)

	This method actually querries PuppetDB. Provided an endpoint and an
optional path and/or query it will fire a request at PuppetDB. If
PuppetDB can be reached and answers within the timeout we’ll decode
the response and give it back or raise for the HTTP Status Code
PuppetDB gave back.

	Parameters:	
	endpoint (string) – The PuppetDB API endpoint we want to query.

	path (string) – An additional path if we don’t wish to query the bare endpoint.

	query (string) – (optional) A query to further narrow down the resultset.

	order_by (bool) – (optional) Set the order parameters for the resultset.

	limit (int) – (optional) Tell PuppetDB to limit it’s response to this number of objects.

	offset (string) – (optional) Tell PuppetDB to start it’s response from the given offset. This is useful for implementing pagination but is not supported just yet.

	include_total – (optional) Include the total number of results

	summarize_by (string) – (optional) Specify what type of object you’d like to see counts at the event-counts and aggregate-event-counts endpoints

	count_by (string) – (optional) Specify what type of object is counted

	count_filter (string) – (optional) Specify a filter for the results

	Raises:	EmptyResponseError

	Returns:	The decoded response from PuppetDB

	Return type:	dict or list

	
_url(endpoint, path=None)

	The complete URL we will end up querying. Depending on the
endpoint we pass in this will result in different URL’s with
different prefixes.

	Parameters:	
	endpoint (string) – The PuppetDB API endpoint we want to query.

	path (string) – An additional path if we don’t wish to query the bare endpoint.

	Returns:	A URL constructed from base_url() with the apropraite API version/prefix and the rest of the path added to it.

	Return type:	string

	
base_url

	A base_url that will be used to construct the final
URL we’re going to query against.

	Returns:	A URL of the form: proto://host:port.

	Return type:	string

	
fact_names()[source]

	Get a list of all known facts.

	
facts(name=None, value=None, query=None)[source]

	Query for facts limited by either name, value and/or query.
This will yield a single Fact object at a time.

	
metric(metric)

	Query for a specific metrc.

	Parameters:	metric (string) – The name of the metric we want.

	Returns:	The return of _query().

	
node(name)[source]

	Gets a single node from PuppetDB.

	
nodes(name=None, query=None)[source]

	Query for nodes by either name or query. If both aren’t
provided this will return a list of all nodes.

	Parameters:	
	name (None or string) – (optional)

	query (None or string) – (optional)

	Returns:	A generator yieling Nodes.

	Return type:	pypuppetdb.types.Node

	
resources(type_=None, title=None, query=None)[source]

	Query for resources limited by either type and/or title or query.
This will yield a Resources object for every returned resource.

	
total

	The total-count of the last request to PuppetDB
if enabled as parameter in _query method

:returns Number of total results
:rtype int

	
version

	The version of the API we’re querying against.

	Returns:	Current API version.

	Return type:	string

v3.API

	
class pypuppetdb.api.v3.API(*args, **kwargs)[source]

	Bases: pypuppetdb.api.BaseAPI

The API object for version 3 of the PuppetDB API. This object contains
all v3 specific methods and ways of doing things.

	Parameters:	**kwargs – Rest of the keywoard arguments passed on to our parent BaseAPI.

	
_query(endpoint, path=None, query=None, order_by=None, limit=None, offset=None, include_total=False, summarize_by=None, count_by=None, count_filter=None)

	This method actually querries PuppetDB. Provided an endpoint and an
optional path and/or query it will fire a request at PuppetDB. If
PuppetDB can be reached and answers within the timeout we’ll decode
the response and give it back or raise for the HTTP Status Code
PuppetDB gave back.

	Parameters:	
	endpoint (string) – The PuppetDB API endpoint we want to query.

	path (string) – An additional path if we don’t wish to query the bare endpoint.

	query (string) – (optional) A query to further narrow down the resultset.

	order_by (bool) – (optional) Set the order parameters for the resultset.

	limit (int) – (optional) Tell PuppetDB to limit it’s response to this number of objects.

	offset (string) – (optional) Tell PuppetDB to start it’s response from the given offset. This is useful for implementing pagination but is not supported just yet.

	include_total – (optional) Include the total number of results

	summarize_by (string) – (optional) Specify what type of object you’d like to see counts at the event-counts and aggregate-event-counts endpoints

	count_by (string) – (optional) Specify what type of object is counted

	count_filter (string) – (optional) Specify a filter for the results

	Raises:	EmptyResponseError

	Returns:	The decoded response from PuppetDB

	Return type:	dict or list

	
_url(endpoint, path=None)

	The complete URL we will end up querying. Depending on the
endpoint we pass in this will result in different URL’s with
different prefixes.

	Parameters:	
	endpoint (string) – The PuppetDB API endpoint we want to query.

	path (string) – An additional path if we don’t wish to query the bare endpoint.

	Returns:	A URL constructed from base_url() with the apropraite API version/prefix and the rest of the path added to it.

	Return type:	string

	
aggregate_event_counts(query, summarize_by, count_by=None, count_filter=None)[source]

	Get event counts from puppetdb

	
base_url

	A base_url that will be used to construct the final
URL we’re going to query against.

	Returns:	A URL of the form: proto://host:port.

	Return type:	string

	
catalog(node)[source]

	Get the most recent catalog for a given node

	
current_version()[source]

	Get version information about the running PuppetDB server

	
event_counts(query, summarize_by, count_by=None, count_filter=None)[source]

	Get event counts from puppetdb

	
events(query)[source]

	A report is made up of events. This allows to query for events
based on the reprt hash.
This yields an Event object for every returned event.

	
fact_names()[source]

	Get a list of all known facts.

	
facts(name=None, value=None, query=None)[source]

	Query for facts limited by either name, value and/or query.
This will yield a single Fact object at a time.

	
metric(metric)

	Query for a specific metrc.

	Parameters:	metric (string) – The name of the metric we want.

	Returns:	The return of _query().

	
node(name)[source]

	Gets a single node from PuppetDB.

	
nodes(name=None, query=None, unreported=2, with_status=False)[source]

	Query for nodes by either name or query. If both aren’t
provided this will return a list of all nodes. This method
also fetches the nodes status and event counts of the latest
report from puppetdb.

	Parameters:	
	name (None or string) – (optional)

	query (None or string) – (optional)

	with_status – (optional) include the node status in the returned nodes

	unreported (None or integer) – (optional) amount of hours when a node gets
marked as unreported

	Returns:	A generator yieling Nodes.

	Return type:	pypuppetdb.types.Node

	
reports(query)[source]

	Get reports for our infrastructure. Currently reports can only
be filtered through a query which requests a specific certname.
If not it will return all reports.

This yields a Report object for every returned report.

	
resources(type_=None, title=None, query=None)[source]

	Query for resources limited by either type and/or title or query.
This will yield a Resources object for every returned resource.

	
server_time()[source]

	Get the current time of the clock on the PuppetDB server

	
total

	The total-count of the last request to PuppetDB
if enabled as parameter in _query method

:returns Number of total results
:rtype int

	
version

	The version of the API we’re querying against.

	Returns:	Current API version.

	Return type:	string

Types

In order to facilitate working with the API most methods like
nodes() don’t return the decoded
JSON response but return an object representation of the querried
endpoints data.

	
class pypuppetdb.types.Node(api, name, deactivated=None, report_timestamp=None, catalog_timestamp=None, facts_timestamp=None, status=None, events=None, unreported_time=None)[source]

	This object represents a node. It additionally has some helper methods
so that you can query for resources or facts directly from the node scope.

	Parameters:	
	api – API object.

	name – Hostname of this node.

	deactivated (string formatted as %Y-%m-%dT%H:%M:%S.%fZ) – (default None) Time this node was deactivated at.

	report_timestamp (string formatted as %Y-%m-%dT%H:%M:%S.%fZ) – (default None) Time of the last report.

	catalog_timestamp (string formatted as %Y-%m-%dT%H:%M:%S.%fZ) – (default None) Time the last time a catalog was compiled.

	facts_timestamp (string formatted as %Y-%m-%dT%H:%M:%S.%fZ) – (default None) Time the last time facts were collected.

	status (string) – (default None) Status of the node changed | unchanged | unreported | failed

	events (dict) – (default None) Counted events from latest Report

	unreported_time (string) – (default None) Time since last report

	Variables:	
	name – Hostname of this node.

	deactivated – datetime.datetime when this host was deactivated or False.

	report_timestamp – datetime.datetime when the last run occured or None.

	catalog_timestamp – datetime.datetime last time a catalog was compiled or None.

	facts_timestamp – datetime.datetime last time when facts were collected or None.

	
fact(name)[source]

	Get a single fact from this node.

	
facts()[source]

	Get all facts of this node.

	
reports()[source]

	Get all reports for this node.

	
resource(type_, title)[source]

	Get a resource matching the supplied type and title.

	
resources(type_=None, title=None)[source]

	Get all resources of this node or all resources of the specified
type.

	
class pypuppetdb.types.Fact(node, name, value)[source]

	his object represents a fact.

	Parameters:	
	node – The hostname this fact was collected from.

	name – The fact’s name, such as ‘osfamily’

	value – The fact’s value, such as ‘Debian’

	Variables:	
	node – string holding the hostname.

	name – string holding the fact’s name.

	value – string holding the fact’s value.

	
class pypuppetdb.types.Resource(node, name, type_, tags, exported, sourcefile, sourceline, parameters={})[source]

	This object represents a resource.

	Parameters:	
	node – The hostname this resource is located on.

	name – The name of the resource in the Puppet manifest.

	type_ – Type of the Puppet resource.

	tags (list) – Tags associated with this resource.

	exported (bool) – If it’s an exported resource.

	sourcefile – The Puppet manifest this resource is declared in.

	sourceline – The line this resource is declared at.

	parameters (dict) – The parameters this resource has been declared with.

	Variables:	
	node – The hostname this resources is located on.

	name – The name of the resource in the Puppet manifest.

	type_ – The type of Puppet resource.

	exported – bool if the resource is exported.

	sourcefile – The Puppet manifest this resource is declared in.

	sourceline – The line this resource is declared at.

	parameters – dict with key:value pairs of parameters.

	
class pypuppetdb.types.Event(node, status, timestamp, hash_, title, property_, message, new_value, old_value, type_)[source]

	This object represents an event.

	Parameters:	
	node – The hostname of the node this event fired on.

	status – The status for the event.

	timestamp – A timestamp of when this event occured.

	hash_ – The hash of this event.

	title – The resource title this event was fired for.

	property_ – The property of the resource this event was fired for.

	message – A message associated with this event.

	new_value – The new value/state of the resource.

	old_value – The old value/state of the resource.

	type_ – The type of the resource this event fired for.

	Variables:	
	status – A string of this event’s status.

	failed – The bool equivalent of status.

	timestamp – A datetime.datetime of when this event happend.

	node – The hostname of the machine this event occured on.

	hash_ – The hash of this event.

	item – dict with information about the item/resource this event was triggered for.

	
class pypuppetdb.types.Report(node, hash_, start, end, received, version, format_, agent_version, transaction)[source]

	This object represents a report.

	Parameters:	
	node – The hostname of the node this report originated on.

	hash_ – A string uniquely identifying this report.

	start (string formatted as %Y-%m-%dT%H:%M:%S.%fZ) – The start time of the agent run.

	end (string formatted as %Y-%m-%dT%H:%M:%S.%fZ) – The time the agent finished its run.

	received (string formatted as %Y-%m-%dT%H:%M:%S.%fZ) – The time PuppetDB received the report.

	version (string) – The catalog / configuration version.

	format_ (int) – The catalog format version.

	agent_version (string) – The Puppet agent version.

	transaction (string) – The UUID of this transaction.

	Variables:	
	node – The hostname this report originated from.

	hash_ – Unique identifier of this report.

	start – datetime.datetime when the Puppet agent run started.

	end – datetime.datetime when the Puppet agent run ended.

	received – datetime.datetime when the report finished uploading.

	version – string catalog configuration version.

	format_ – int catalog format version.

	agent_version – string Puppet Agent version.

	run_time – datetime.timedelta of end - start.

	transaction – UUID identifying this transaction.

	
class pypuppetdb.types.Catalog(node, edges, resources, version, transaction_uuid)[source]

	This object represents a compiled catalog from puppet. It contains Resource
and Edge object that represent the dependency graph.

	Parameters:	
	node – Name of the host

	edges (list containing dict with Edge information) – Edges returned from Catalog data

	resources (list containing dict with Resources) – Resources returned from Catalog data

	version (string) – Catalog version from Puppet (unique for each node)

	transaction_uuid (string) – A string used to match the catalog with the
corresponding report that was issued during
the same puppet run

	Variables:	
	node – string Name of the host

	version – string Catalog version from Puppet
(unique for each node)

	transaction_uuid – string used to match the catalog with
corresponding report

	edges – list of Edge The source Resource object of the relationship

	resources – dict of Resource The source Resource object of the relationship

	
class pypuppetdb.types.Edge(source, target, relationship)[source]

	This object represents the connection between two Resource objects

	Parameters:	
	source (Resource) – The source Resource object of the relationship

	target (Resource) – The target Resource object of the relationship

	relaptionship – Name of the Puppet Ressource Relationship

	Variables:	
	source – Resource The source Resource object

	target – Resource The target Resource object

	relationship – string Name of the Puppet Resource relationship

Errors

Unfortunately things can go haywire. PuppetDB might not be reachable
or complain about our query, requests might have to wait too long to
recieve a response or the body is just too big to handle.

In that case, we’ll throw an exception at you.

	
exception pypuppetdb.errors.APIError[source]

	Our base exception the other errors inherit from.

	
exception pypuppetdb.errors.ImproperlyConfiguredError[source]

	Bases: pypuppetdb.errors.APIError

This exception is thrown when the API is initialised
and it detects incompatbile configuration such as SSL turned
on but no certificates provided.

	
exception pypuppetdb.errors.UnsupportedVersionError[source]

	Bases: pypuppetdb.errors.APIError

Triggers when using the connect() function and
providing it with an unknown API version.

	
exception pypuppetdb.errors.DoesNotComputeError[source]

	Bases: pypuppetdb.errors.APIError

This error will be thrown when a function is called with
an incompatible set of optional parameters. This is the ‘you are
being a naughty developer, go read the docs’ error.

	
exception pypuppetdb.errors.EmptyResponseError[source]

	Bases: pypuppetdb.errors.APIError

Will be thrown when we did recieve a response but the
response is empty.

Utilities

A few functions that are used across this library have been put
into their own utils module.

	
class pypuppetdb.utils.UTC[source]

	UTC

	
pypuppetdb.utils.json_to_datetime(date)[source]

	Tranforms a JSON datetime string into a timezone aware datetime
object with a UTC tzinfo object.

	Parameters:	date (string) – The datetime representation.

	Returns:	A timezone aware datetime object.

	Return type:	datetime.datetime

 Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	pypuppetdb 0.1.0 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 pypuppetdb	

 Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	pypuppetdb 0.1.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | J
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

_

 	

 	_query() (pypuppetdb.api.BaseAPI method)

 	

 	(pypuppetdb.api.v2.API method)

 	(pypuppetdb.api.v3.API method)

 	

 	_url() (pypuppetdb.api.BaseAPI method)

 	

 	(pypuppetdb.api.v2.API method)

 	(pypuppetdb.api.v3.API method)

A

 	

 	aggregate_event_counts() (pypuppetdb.api.v3.API method)

 	API (class in pypuppetdb.api.v2)

 	

 	(class in pypuppetdb.api.v3)

 	

 	API_VERSIONS (in module pypuppetdb)

 	APIError

B

 	

 	base_url (pypuppetdb.api.BaseAPI attribute)

 	

 	(pypuppetdb.api.v2.API attribute)

 	(pypuppetdb.api.v3.API attribute)

 	

 	BaseAPI (class in pypuppetdb.api)

C

 	

 	Catalog (class in pypuppetdb.types)

 	catalog() (pypuppetdb.api.v3.API method)

 	

 	current_version() (pypuppetdb.api.v3.API method)

D

 	

 	DoesNotComputeError

E

 	

 	Edge (class in pypuppetdb.types)

 	EmptyResponseError

 	Event (class in pypuppetdb.types)

 	

 	event_counts() (pypuppetdb.api.v3.API method)

 	events() (pypuppetdb.api.v3.API method)

F

 	

 	Fact (class in pypuppetdb.types)

 	fact() (pypuppetdb.types.Node method)

 	

 	fact_names() (pypuppetdb.api.v2.API method)

 	

 	(pypuppetdb.api.v3.API method)

 	facts() (pypuppetdb.api.v2.API method)

 	

 	(pypuppetdb.api.v3.API method)

 	(pypuppetdb.types.Node method)

I

 	

 	ImproperlyConfiguredError

J

 	

 	json_to_datetime() (in module pypuppetdb.utils)

M

 	

 	metric() (pypuppetdb.api.BaseAPI method)

 	

 	(pypuppetdb.api.v2.API method)

 	(pypuppetdb.api.v3.API method)

N

 	

 	Node (class in pypuppetdb.types)

 	node() (pypuppetdb.api.v2.API method)

 	

 	(pypuppetdb.api.v3.API method)

 	

 	nodes() (pypuppetdb.api.v2.API method)

 	

 	(pypuppetdb.api.v3.API method)

P

 	

 	pypuppetdb (module)

R

 	

 	Report (class in pypuppetdb.types)

 	reports() (pypuppetdb.api.v3.API method)

 	

 	(pypuppetdb.types.Node method)

 	Resource (class in pypuppetdb.types)

 	

 	resource() (pypuppetdb.types.Node method)

 	resources() (pypuppetdb.api.v2.API method)

 	

 	(pypuppetdb.api.v3.API method)

 	(pypuppetdb.types.Node method)

S

 	

 	server_time() (pypuppetdb.api.v3.API method)

T

 	

 	total (pypuppetdb.api.BaseAPI attribute)

 	

 	(pypuppetdb.api.v2.API attribute)

 	(pypuppetdb.api.v3.API attribute)

U

 	

 	UnsupportedVersionError

 	

 	UTC (class in pypuppetdb.utils)

V

 	

 	version (pypuppetdb.api.BaseAPI attribute)

 	

 	(pypuppetdb.api.v2.API attribute)

 	(pypuppetdb.api.v3.API attribute)

 Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

 _modules/pypuppetdb/api/v3.html

 Navigation

 		
 index

 		
 modules |

 		pypuppetdb 0.1.0 documentation »

 		Module code »

 		pypuppetdb »

 		pypuppetdb.api »

 Source code for pypuppetdb.api.v3

from __future__ import unicode_literals
from __future__ import absolute_import

import logging

from pypuppetdb.api import BaseAPI
from pypuppetdb.utils import json_to_datetime
from datetime import datetime, timedelta
from pypuppetdb.types import (
 Node, Fact, Resource,
 Report, Event, Catalog
)

log = logging.getLogger(__name__)

[docs]class API(BaseAPI):
 """The API object for version 3 of the PuppetDB API. This object contains
 all v3 specific methods and ways of doing things.

 :param **kwargs: Rest of the keywoard arguments passed on to our parent\
 :class:`~pypuppetdb.api.BaseAPI`.
 """

 def __init__(self, *args, **kwargs):
 """Initialise the API object."""
 super(API, self).__init__(api_version=3, **kwargs)
 log.debug('API initialised with {0}.'.format(kwargs))

[docs] def node(self, name):
 """Gets a single node from PuppetDB."""
 nodes = self.nodes(name=name)
 return next(node for node in nodes)

[docs] def nodes(self, name=None, query=None, unreported=2, with_status=False):
 """Query for nodes by either name or query. If both aren't
 provided this will return a list of all nodes. This method
 also fetches the nodes status and event counts of the latest
 report from puppetdb.

 :param name: (optional)
 :type name: :obj:`None` or :obj:`string`
 :param query: (optional)
 :type query: :obj:`None` or :obj:`string`
 :param with_status: (optional) include the node status in the\
 returned nodes
 :type with_status: :bool:
 :param unreported: (optional) amount of hours when a node gets
 marked as unreported
 :type unreported: :obj:`None` or integer

 :returns: A generator yieling Nodes.
 :rtype: :class:`pypuppetdb.types.Node`
 """
 nodes = self._query('nodes', path=name, query=query)
 # If we happen to only get one node back it
 # won't be inside a list so iterating over it
 # goes boom. Therefor we wrap a list around it.
 if type(nodes) == dict:
 nodes = [nodes,]

 if with_status:
 latest_events = self._query(
 'event-counts',
 query='["=","latest-report?",true]',
 summarize_by='certname')

 for node in nodes:
 node['unreported_time'] = None
 node['status'] = None

 if with_status:
 status = [s for s in latest_events
 if s['subject']['title'] == node['name']]

 # node status from events
 if with_status and status:
 node['events'] = status = status[0]
 if status['successes'] > 0:
 node['status'] = 'changed'
 if status['failures'] > 0:
 node['status'] = 'failed'
 else:
 if with_status:
 node['status'] = 'unchanged'
 node['events'] = None

 # node report age
 if with_status and node['report_timestamp'] is not None:
 try:
 last_report = json_to_datetime(node['report_timestamp'])
 last_report = last_report.replace(tzinfo=None)
 now = datetime.utcnow()
 unreported_border = now-timedelta(hours=unreported)
 if last_report < unreported_border:
 delta = (datetime.utcnow()-last_report)
 node['status'] = 'unreported'
 node['unreported_time'] = '{0}d {1}h {2}m'.format(
 delta.days,
 int(delta.seconds/3600),
 int((delta.seconds % 3600)/60)
)
 except AttributeError:
 node['status'] = 'unreported'

 if not node['report_timestamp'] and with_status:
 node['status'] = 'unreported'

 yield Node(self,
 node['name'],
 deactivated=node['deactivated'],
 report_timestamp=node['report_timestamp'],
 catalog_timestamp=node['catalog_timestamp'],
 facts_timestamp=node['facts_timestamp'],
 status=node['status'],
 events=node['events'],
 unreported_time=node['unreported_time']
)

[docs] def facts(self, name=None, value=None, query=None):
 """Query for facts limited by either name, value and/or query.
 This will yield a single Fact object at a time."""

 log.debug('{0}, {1}, {2}'.format(name, value, query))
 if name is not None and value is not None:
 path = '{0}/{1}'.format(name, value)
 elif name is not None and value is None:
 path = name
 elif name is None and value is None and query is not None:
 path = None
 else:
 log.debug("We want to query for all facts.")
 query = ''
 path = None

 facts = self._query('facts', path=path, query=query)
 for fact in facts:
 yield Fact(
 fact['certname'],
 fact['name'],
 fact['value'],
)

[docs] def fact_names(self):
 """Get a list of all known facts."""

 return self._query('fact-names')

[docs] def resources(self, type_=None, title=None, query=None):
 """Query for resources limited by either type and/or title or query.
 This will yield a Resources object for every returned resource."""

 log.debug('YOLO')
 if type_ is not None:
 # Need to capitalize the resource type since PuppetDB doesn't
 # answer to lower case type names.
 # bugs.puppetlabs.com/some_value
 type_ = type_.capitalize()
 if title is not None:
 path = '{0}/{1}'.format(type_, title)
 elif title is None:
 path = type_
 else:
 log.debug('Going to query for all resources. This is usually a '
 'bad idea as it might return enormous amounts of '
 'resources.')
 query = ''
 path = None

 resources = self._query('resources', path=path, query=query)
 for resource in resources:
 yield Resource(
 resource['certname'],
 resource['title'],
 resource['type'],
 resource['tags'],
 resource['exported'],
 resource['file'],
 resource['line'],
 resource['parameters'],
)

[docs] def reports(self, query):
 """Get reports for our infrastructure. Currently reports can only
 be filtered through a query which requests a specific certname.
 If not it will return all reports.

 This yields a Report object for every returned report."""
 reports = self._query('reports', query=query)
 for report in reports:
 yield Report(
 report['certname'],
 report['hash'],
 report['start-time'],
 report['end-time'],
 report['receive-time'],
 report['configuration-version'],
 report['report-format'],
 report['puppet-version'],
 report['transaction-uuid']
)

[docs] def events(self, query):
 """A report is made up of events. This allows to query for events
 based on the reprt hash.
 This yields an Event object for every returned event."""

 events = self._query('events', query=query)
 for event in events:
 yield Event(
 event['certname'],
 event['status'],
 event['timestamp'],
 event['report'],
 event['resource-title'],
 event['property'],
 event['message'],
 event['new-value'],
 event['old-value'],
 event['resource-type'],
)

[docs] def event_counts(self, query, summarize_by,
 count_by=None, count_filter=None):
 """Get event counts from puppetdb"""
 return self._query('event-counts',
 query=query,
 summarize_by=summarize_by,
 count_by=count_by,
 count_filter=count_filter)

[docs] def aggregate_event_counts(self, query, summarize_by,
 count_by=None, count_filter=None):
 """Get event counts from puppetdb"""
 return self._query('aggregate-event-counts',
 query=query, summarize_by=summarize_by,
 count_by=count_by, count_filter=count_filter)

[docs] def server_time(self):
 """Get the current time of the clock on the PuppetDB server"""
 return self._query('server-time')['server-time']

[docs] def current_version(self):
 """Get version information about the running PuppetDB server"""
 return self._query('version')['version']

[docs] def catalog(self, node):
 """Get the most recent catalog for a given node"""
 c = self._query('catalogs', path=node)
 return Catalog(c['data']['name'],
 c['data']['edges'],
 c['data']['resources'],
 c['data']['version'],
 c['data']['transaction-uuid'])

 © Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

_modules/pypuppetdb/api/v2.html

 Navigation

 		
 index

 		
 modules |

 		pypuppetdb 0.1.0 documentation »

 		Module code »

 		pypuppetdb »

 		pypuppetdb.api »

 Source code for pypuppetdb.api.v2

from __future__ import unicode_literals
from __future__ import absolute_import

import logging

from pypuppetdb.api import BaseAPI
from pypuppetdb.types import (
 Node, Fact, Resource,
)

log = logging.getLogger(__name__)

[docs]class API(BaseAPI):
 """The API object for version 2 of the PuppetDB API. This object contains
 all v2 specific methods and ways of doing things.

 :param **kwargs: Rest of the keywoard arguments passed on to our parent\
 :class:`~pypuppetdb.api.BaseAPI`.
 """

 def __init__(self, *args, **kwargs):
 """Initialise the API object."""
 super(API, self).__init__(api_version=2, **kwargs)
 log.debug('API initialised with {0}'.format(kwargs))

[docs] def node(self, name):
 """Gets a single node from PuppetDB."""
 nodes = self.nodes(name=name)
 return next(node for node in nodes)

[docs] def nodes(self, name=None, query=None):
 """Query for nodes by either name or query. If both aren't
 provided this will return a list of all nodes.

 :param name: (optional)
 :type name: :obj:`None` or :obj:`string`
 :param query: (optional)
 :type query: :obj:`None` or :obj:`string`

 :returns: A generator yieling Nodes.
 :rtype: :class:`pypuppetdb.types.Node`
 """

 nodes = self._query('nodes', path=name, query=query)
 # If we happen to only get one node back it
 # won't be inside a list so iterating over it
 # goes boom. Therefor we wrap a list around it.
 if type(nodes) == dict:
 log.debug("Request returned a single node.")
 nodes = [nodes,]

 for node in nodes:
 yield Node(self,
 node['name'],
 deactivated=node['deactivated'],
 report_timestamp=node['report_timestamp'],
 catalog_timestamp=node['catalog_timestamp'],
 facts_timestamp=node['facts_timestamp'],
)

[docs] def facts(self, name=None, value=None, query=None):
 """Query for facts limited by either name, value and/or query.
 This will yield a single Fact object at a time."""

 log.debug('{0}, {1}, {2}'.format(name, value, query))
 if name is not None and value is not None:
 path = '{0}/{1}'.format(name, value)
 elif name is not None and value is None:
 path = name
 elif name is None and value is None and query is not None:
 path = None
 else:
 log.debug("We want to query for all facts.")
 query = ''
 path = None

 facts = self._query('facts', path=path, query=query)
 for fact in facts:
 yield Fact(
 fact['certname'],
 fact['name'],
 fact['value'],
)

[docs] def fact_names(self):
 """Get a list of all known facts."""

 return self._query('fact-names')

[docs] def resources(self, type_=None, title=None, query=None):
 """Query for resources limited by either type and/or title or query.
 This will yield a Resources object for every returned resource."""

 if type_ is not None:
 # Need to capitalize the resource type since PuppetDB doesn't
 # answer to lower case type names.
 # bugs.puppetlabs.com/some_value
 type_ = type_.capitalize()
 if title is not None:
 path = '{0}/{1}'.format(type_, title)
 elif title is None:
 path = type_
 else:
 log.debug('Going to query for all resources. This is usually a '
 'bad idea as it might return enormous amounts of '
 'resources.')
 query = ''
 path = None

 resources = self._query('resources', path=path, query=query)
 for resource in resources:
 yield Resource(
 resource['certname'],
 resource['title'],
 resource['type'],
 resource['tags'],
 resource['exported'],
 resource['sourcefile'],
 resource['sourceline'],
 resource['parameters'],
)

 © Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

_modules/pypuppetdb/api.html

 Navigation

 		
 index

 		
 modules |

 		pypuppetdb 0.1.0 documentation »

 		Module code »

 		pypuppetdb »

 Source code for pypuppetdb.api

from __future__ import unicode_literals
from __future__ import absolute_import

import logging

import json
import requests

from pypuppetdb.errors import (
 ImproperlyConfiguredError,
 EmptyResponseError,
 UnsupportedVersionError,
 APIError,
)

log = logging.getLogger(__name__)

API_VERSIONS = {
 2: 'v2',
 3: 'v3',
}

ENDPOINTS = {
 2: {
 'facts': 'facts',
 'fact-names': 'fact-names',
 'nodes': 'nodes',
 'resources': 'resources',
 'metrics': 'metrics',
 'mbean': 'metrics/mbean',
 },
 3: {
 'facts': 'facts',
 'fact-names': 'fact-names',
 'nodes': 'nodes',
 'resources': 'resources',
 'catalogs': 'catalogs',
 'metrics': 'metrics',
 'mbean': 'metrics/mbean',
 'reports': 'reports',
 'events': 'events',
 'event-counts': 'event-counts',
 'aggregate-event-counts': 'aggregate-event-counts',
 'server-time': 'server-time',
 'version': 'version',
 },
}

ERROR_STRINGS = {
 'timeout': 'Connection to PuppetDB timed out on',
 'refused': 'Could not reach PuppetDB on',
}

[docs]class BaseAPI(object):
 """This is a Base or Abstract class and is not meant to be instantiated
 or used directly.

 The BaseAPI object defines a set of methods that can be
 reused across different versions of the PuppetDB API. If querying for a
 certain resource is done in an identical fashion across different versions
 it will be implemented here and should be overridden in their respective
 versions if they deviate.

 If :attr:`ssl` is set to `True` but either :attr:`ssl_key` or\
 :attr:`ssl_cert` are `None` this will raise an error.

 When at initialisation :obj:`api_version` isn't found in\
 :const:`API_VERSIONS` this will raise an error.

 :param api_version: Version of the API we're initialising.
 :type api_version: :obj:`int`
 :param host: (optional) Hostname or IP of PuppetDB.
 :type host: :obj:`string`
 :param port: (optional) Port on which to talk to PuppetDB.
 :type port: :obj:`int`
 :param ssl_verify: (optional) Verify PuppetDB server certificate.
 :type ssl_verify: :obj:`bool`
 :param ssl_key: (optional) Path to our client secret key.
 :type ssl_key: :obj:`None` or :obj:`string` representing a filesystem\
 path.
 :param ssl_cert: (optional) Path to our client certificate.
 :type ssl_cert: :obj:`None` or :obj:`string` representing a filesystem\
 path.
 :param timeout: (optional) Number of seconds to wait for a response.
 :type timeout: :obj:`int`

 :raises: :class:`~pypuppetdb.errors.ImproperlyConfiguredError`
 :raises: :class:`~pypuppetdb.errors.UnsupportedVersionError`
 """
 def __init__(self, api_version, host='localhost', port=8080,
 ssl_verify=True, ssl_key=None, ssl_cert=None, timeout=10):
 """Initialises our BaseAPI object passing the parameters needed in
 order to be able to create the connection strings, set up SSL and
 timeouts and so forth."""

 if api_version in API_VERSIONS:
 self.api_version = API_VERSIONS[api_version]
 else:
 raise UnsupportedVersionError

 self.host = host
 self.port = port
 self.ssl_verify = ssl_verify
 self.ssl_key = ssl_key
 self.ssl_cert = ssl_cert
 self.timeout = timeout
 self.endpoints = ENDPOINTS[api_version]

 if self.ssl_key is not None and self.ssl_cert is not None:
 self.protocol = 'https'
 else:
 self.protocol = 'http'

 @property
[docs] def version(self):
 """The version of the API we're querying against.

 :returns: Current API version.
 :rtype: :obj:`string`"""
 return self.api_version

 @property
[docs] def base_url(self):
 """A base_url that will be used to construct the final
 URL we're going to query against.

 :returns: A URL of the form: ``proto://host:port``.
 :rtype: :obj:`string`
 """
 return '{proto}://{host}:{port}'.format(
 proto=self.protocol,
 host=self.host,
 port=self.port,
)

 @property
[docs] def total(self):
 """The total-count of the last request to PuppetDB
 if enabled as parameter in _query method

 :returns Number of total results
 :rtype :obj:`int`
 """
 if self.last_total is not None:
 return int(self.last_total)

[docs] def _url(self, endpoint, path=None):
 """The complete URL we will end up querying. Depending on the
 endpoint we pass in this will result in different URL's with
 different prefixes.

 :param endpoint: The PuppetDB API endpoint we want to query.
 :type endpoint: :obj:`string`
 :param path: An additional path if we don't wish to query the\
 bare endpoint.
 :type path: :obj:`string`

 :returns: A URL constructed from :func:`base_url` with the\
 apropraite API version/prefix and the rest of the path added\
 to it.
 :rtype: :obj:`string`
 """

 log.debug('_url called with endpoint: {0} and path: {1}'.format(
 endpoint, path))

 if endpoint in self.endpoints:
 api_prefix = self.api_version
 endpoint = self.endpoints[endpoint]
 else:
 # If we reach this we're trying to query an endpoint that doesn't
 # exist. This shouldn't happen unless someone made a booboo.
 raise APIError

 url = '{base_url}/{api_prefix}/{endpoint}'.format(
 base_url=self.base_url,
 api_prefix=api_prefix,
 endpoint=endpoint,
)

 if path is not None:
 url = '{0}/{1}'.format(url, path)

 return url

[docs] def _query(self, endpoint, path=None, query=None,
 order_by=None, limit=None, offset=None, include_total=False,
 summarize_by=None, count_by=None, count_filter=None):
 """This method actually querries PuppetDB. Provided an endpoint and an
 optional path and/or query it will fire a request at PuppetDB. If
 PuppetDB can be reached and answers within the timeout we'll decode
 the response and give it back or raise for the HTTP Status Code
 PuppetDB gave back.

 :param endpoint: The PuppetDB API endpoint we want to query.
 :type endpoint: :obj:`string`
 :param path: An additional path if we don't wish to query the\
 bare endpoint.
 :type path: :obj:`string`
 :param query: (optional) A query to further narrow down the resultset.
 :type query: :obj:`string`
 :param order_by: (optional) Set the order parameters for the resultset.
 :type order_by: :obj:`string`
 :param limit: (optional) Tell PuppetDB to limit it's response to this\
 number of objects.
 :type limit: :obj:`int`
 :param offset: (optional) Tell PuppetDB to start it's response from\
 the given offset. This is useful for implementing pagination\
 but is not supported just yet.
 :type offset: :obj:`string`
 :param include_total: (optional) Include the total number of results
 :type order_by: :obj:`bool`
 :param summarize_by: (optional) Specify what type of object you'd like\
 to see counts at the event-counts and aggregate-event-counts \
 endpoints
 :type summarize_by: :obj:`string`
 :param count_by: (optional) Specify what type of object is counted
 :type count_by: :obj:`string`
 :param count_filter: (optional) Specify a filter for the results
 :type count_filter: :obj:`string`

 :raises: :class:`~pypuppetdb.errors.EmptyResponseError`

 :returns: The decoded response from PuppetDB
 :rtype: :obj:`dict` or :obj:`list`
 """
 log.debug('_query called with endpoint: {0}, path: {1}, query: {2}, '
 'limit: {3}, offset: {4}, summarize_by {5}, count_by {6}, '
 'count_filter: {7}'.format(endpoint, path, query, limit,
 offset, summarize_by, count_by,
 count_filter))

 url = self._url(endpoint, path=path)
 headers = {
 'content-type': 'application/json',
 'accept': 'application/json',
 'accept-charset': 'utf-8'
 }

 payload = {}
 if query is not None:
 payload['query'] = query
 if order_by is not None:
 payload['order-by'] = order_by
 if limit is not None:
 payload['limit'] = limit
 if include_total is True:
 payload['include-total'] = json.dumps(include_total)
 if offset is not None:
 payload['offset'] = offset
 if summarize_by is not None:
 payload['summarize-by'] = summarize_by
 if count_by is not None:
 payload['count-by'] = count_by
 if count_filter is not None:
 payload['count-filter'] = count_filter

 if not (payload):
 payload = None

 try:
 r = requests.get(url, params=payload, headers=headers,
 verify=self.ssl_verify, cert=(self.ssl_cert,
 self.ssl_key),
 timeout=self.timeout)
 r.raise_for_status()

 # get total number of results if requested with include-total
 # just a quick hack - needs improvement
 if 'X-Records' in r.headers:
 self.last_total = r.headers['X-Records']
 else:
 self.last_total = None

 json_body = r.json()
 if json_body is not None:
 return json_body
 else:
 del json_body
 raise EmptyResponseError

 except requests.exceptions.Timeout:
 log.error("{0} {1}:{2} over {3}.".format(ERROR_STRINGS['timeout'],
 self.host, self.port,
 self.protocol.upper()))
 raise
 except requests.exceptions.ConnectionError:
 log.error("{0} {1}:{2} over {3}.".format(ERROR_STRINGS['refused'],
 self.host, self.port,
 self.protocol.upper()))
 raise
 except requests.exceptions.HTTPError as err:
 log.error("{0} {1}:{2} over {3}.".format(err.response.text,
 self.host, self.port,
 self.protocol.upper()))
 raise

 # Method stubs

 def nodes(self):
 raise NotImplementedError

 def node(self):
 raise NotImplementedError

 def facts(self):
 raise NotImplementedError

 def resources(self):
 raise NotImplementedError

[docs] def metric(self, metric):
 """Query for a specific metrc.

 :param metric: The name of the metric we want.
 :type metric: :obj:`string`

 :returns: The return of :meth:`~pypuppetdb.api.BaseAPI._query`.
 """
 return self._query('mbean', path=metric)

 © Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

_modules/pypuppetdb/types.html

 Navigation

 		
 index

 		
 modules |

 		pypuppetdb 0.1.0 documentation »

 		Module code »

 		pypuppetdb »

 Source code for pypuppetdb.types

from __future__ import unicode_literals
from __future__ import absolute_import

import logging
from pypuppetdb.utils import json_to_datetime

log = logging.getLogger(__name__)

[docs]class Event(object):
 """This object represents an event.

 :param node: The hostname of the node this event fired on.
 :param status: The status for the event.
 :param timestamp: A timestamp of when this event occured.
 :param hash_: The hash of this event.
 :param title: The resource title this event was fired for.
 :param property_: The property of the resource this event was fired for.
 :param message: A message associated with this event.
 :param new_value: The new value/state of the resource.
 :param old_value: The old value/state of the resource.
 :param type_: The type of the resource this event fired for.

 :ivar status: A :obj:`string` of this event's status.
 :ivar failed: The :obj:`bool` equivalent of `status`.
 :ivar timestamp: A :obj:`datetime.datetime` of when this event happend.
 :ivar node: The hostname of the machine this event\
 occured on.
 :ivar hash_: The hash of this event.
 :ivar item: :obj:`dict` with information about the item/resource this\
 event was triggered for.
 """
 def __init__(self, node, status, timestamp, hash_, title, property_,
 message, new_value, old_value, type_):
 self.node = node
 self.status = status
 if self.status == 'failure':
 self.failed = True
 else:
 self.failed = False
 self.timestamp = json_to_datetime(timestamp)
 self.hash_ = hash_
 self.item = {}
 self.item['title'] = title
 self.item['type'] = type_
 self.item['property'] = property_
 self.item['message'] = message
 self.item['old'] = old_value
 self.item['new'] = new_value
 self.__string = '{0}[{1}]/{2}'.format(self.item['type'],
 self.item['title'],
 self.hash_)

 def __repr__(self):
 return str('Event: {0}'.format(self.__string))

 def __str__(self):
 return str('{0}').format(self.__string)

 def __unicode__(self):
 return self.__string

[docs]class Report(object):
 """This object represents a report.

 :param node: The hostname of the node this report originated on.
 :param hash_: A string uniquely identifying this report.
 :param start: The start time of the agent run.
 :type start: :obj:`string` formatted as ``%Y-%m-%dT%H:%M:%S.%fZ``
 :param end: The time the agent finished its run.
 :type end: :obj:`string` formatted as ``%Y-%m-%dT%H:%M:%S.%fZ``
 :param received: The time PuppetDB received the report.
 :type received: :obj:`string` formatted as ``%Y-%m-%dT%H:%M:%S.%fZ``
 :param version: The catalog / configuration version.
 :type version: :obj:`string`
 :param format_: The catalog format version.
 :type format_: :obj:`int`
 :param agent_version: The Puppet agent version.
 :type agent_version: :obj:`string`
 :param transaction: The UUID of this transaction.
 :type transaction: :obj:`string`

 :ivar node: The hostname this report originated from.
 :ivar hash_: Unique identifier of this report.
 :ivar start: :obj:`datetime.datetime` when the Puppet agent run started.
 :ivar end: :obj:`datetime.datetime` when the Puppet agent run ended.
 :ivar received: :obj:`datetime.datetime` when the report finished\
 uploading.
 :ivar version: :obj:`string` catalog configuration version.
 :ivar format_: :obj:`int` catalog format version.
 :ivar agent_version: :obj:`string` Puppet Agent version.
 :ivar run_time: :obj:`datetime.timedelta` of **end** - **start**.
 :ivar transaction: UUID identifying this transaction.

 """
 def __init__(self, node, hash_, start, end, received, version,
 format_, agent_version, transaction):

 self.node = node
 self.hash_ = hash_
 self.start = json_to_datetime(start)
 self.end = json_to_datetime(end)
 self.received = json_to_datetime(received)
 self.version = version
 self.format_ = format_
 self.agent_version = agent_version
 self.run_time = self.end - self.start
 self.transaction = transaction
 self.__string = '{0}'.format(self.hash_)

 def __repr__(self):
 return str('Report: {0}'.format(self.__string))

 def __str__(self):
 return str('{0}').format(self.__string)

 def __unicode__(self):
 return self.__string

[docs]class Fact(object):
 """his object represents a fact.

 :param node: The hostname this fact was collected from.
 :param name: The fact's name, such as 'osfamily'
 :param value: The fact's value, such as 'Debian'

 :ivar node: :obj:`string` holding the hostname.
 :ivar name: :obj:`string` holding the fact's name.
 :ivar value: :obj:`string` holding the fact's value.
 """
 def __init__(self, node, name, value):
 self.node = node
 self.name = name
 self.value = value
 self.__string = '{0}/{1}'.format(self.name, self.node)

 def __repr__(self):
 return str('Fact: {0}'.format(self.__string))

 def __str__(self):
 return str('{0}').format(self.__string)

 def __unicode__(self):
 return self.__string

[docs]class Resource(object):
 """This object represents a resource.

 :param node: The hostname this resource is located on.
 :param name: The name of the resource in the Puppet manifest.
 :param type_: Type of the Puppet resource.
 :param tags: Tags associated with this resource.
 :type tags: :obj:`list`
 :param exported: If it's an exported resource.
 :type exported: :obj:`bool`
 :param sourcefile: The Puppet manifest this resource is declared in.
 :param sourceline: The line this resource is declared at.
 :param parameters: The parameters this resource has been declared with.
 :type parameters: :obj:`dict`

 :ivar node: The hostname this resources is located on.
 :ivar name: The name of the resource in the Puppet manifest.
 :ivar type_: The type of Puppet resource.
 :ivar exported: :obj:`bool` if the resource is exported.
 :ivar sourcefile: The Puppet manifest this resource is declared in.
 :ivar sourceline: The line this resource is declared at.
 :ivar parameters: :obj:`dict` with key:value pairs of parameters.
 """
 def __init__(self, node, name, type_, tags, exported, sourcefile,
 sourceline, parameters={}):
 self.node = node
 self.name = name
 self.type_ = type_
 self.tags = tags
 self.exported = exported
 self.sourcefile = sourcefile
 self.sourceline = sourceline
 self.parameters = parameters
 self.__string = '{0}[{1}]'.format(self.type_, self.name)

 def __repr__(self):
 return str('<Resource: {0}>').format(self.__string)

 def __str__(self):
 return str('{0}').format(self.__string)

 def __unicode__(self):
 return self.__string

[docs]class Node(object):
 """This object represents a node. It additionally has some helper methods
 so that you can query for resources or facts directly from the node scope.

 :param api: API object.
 :param name: Hostname of this node.
 :param deactivated: (default `None`) Time this node was deactivated at.
 :type deactivated: :obj:`string` formatted as ``%Y-%m-%dT%H:%M:%S.%fZ``
 :param report_timestamp: (default `None`) Time of the last report.
 :type report_timestamp: :obj:`string` formatted as\
 ``%Y-%m-%dT%H:%M:%S.%fZ``
 :param catalog_timestamp: (default `None`) Time the last time a catalog\
 was compiled.
 :type catalog_timestamp: :obj:`string` formatted as\
 ``%Y-%m-%dT%H:%M:%S.%fZ``
 :param facts_timestamp: (default `None`) Time the last time facts were\
 collected.
 :type facts_timestamp: :obj:`string` formatted as\
 ``%Y-%m-%dT%H:%M:%S.%fZ``
 :param status: (default `None`) Status of the node\
 changed | unchanged | unreported | failed
 :type status: :obj:`string`
 :param events: (default `None`) Counted events from latest Report
 :type events: :obj:`dict`
 :param unreported_time: (default `None`) Time since last report
 :type unreported_time: :obj:`string`

 :ivar name: Hostname of this node.
 :ivar deactivated: :obj:`datetime.datetime` when this host was\
 deactivated or `False`.
 :ivar report_timestamp: :obj:`datetime.datetime` when the last run\
 occured or `None`.
 :ivar catalog_timestamp: :obj:`datetime.datetime` last time a catalog was\
 compiled or `None`.
 :ivar facts_timestamp: :obj:`datetime.datetime` last time when facts were\
 collected or `None`.
 """
 def __init__(self, api, name, deactivated=None, report_timestamp=None,
 catalog_timestamp=None, facts_timestamp=None,
 status=None, events=None, unreported_time=None):
 self.name = name
 self.status = status
 self.events = events
 self.unreported_time = unreported_time

 if deactivated is not None:
 self.deactivated = json_to_datetime(deactivated)
 else:
 self.deactivated = False
 if report_timestamp is not None:
 self.report_timestamp = json_to_datetime(report_timestamp)
 else:
 self.report_timestamp = report_timestamp
 if facts_timestamp is not None:
 self.facts_timestamp = json_to_datetime(facts_timestamp)
 else:
 self.facts_timestamp = facts_timestamp
 if catalog_timestamp is not None:
 self.catalog_timestamp = json_to_datetime(catalog_timestamp)
 else:
 self.catalog_timestamp = catalog_timestamp

 self.__api = api
 self.__query_scope = '["=", "certname", "{0}"]'.format(self.name)
 self.__string = self.name

 def __repr__(self):
 return str('<Node: {0}>').format(self.__string)

 def __str__(self):
 return str('{0}').format(self.__string)

 def __unicode__(self):
 return self.__string

[docs] def facts(self):
 """Get all facts of this node."""
 return self.__api.facts(query=self.__query_scope)

[docs] def fact(self, name):
 """Get a single fact from this node."""
 facts = self.__api.facts(name=name, query=self.__query_scope)
 return next(fact for fact in facts)

[docs] def resources(self, type_=None, title=None):
 """Get all resources of this node or all resources of the specified
 type."""
 if type_ is None:
 resources = self.__api.resources(query=self.__query_scope)
 elif type_ is not None and title is None:
 resources = self.__api.resources(type_=type_,
 query=self.__query_scope)
 else:
 resources = self.__api.resources(type_=type_, title=title,
 query=self.__query_scope)
 return resources

[docs] def resource(self, type_, title):
 """Get a resource matching the supplied type and title."""
 resources = self.__api.resources(type_=type_, title=title,
 query=self.__query_scope)
 return next(resource for resource in resources)

[docs] def reports(self):
 """Get all reports for this node."""
 return self.__api.reports(self.__query_scope)

[docs]class Catalog(object):
 """
 This object represents a compiled catalog from puppet. It contains Resource
 and Edge object that represent the dependency graph.

 :param node: Name of the host
 :type edges: :obj:`string`
 :param edges: Edges returned from Catalog data
 :type edges: :obj:`list` containing :obj:`dict` with Edge information
 :param resources: Resources returned from Catalog data
 :type resources: :obj:`list` containing :obj:`dict` with Resources
 :param version: Catalog version from Puppet (unique for each node)
 :type version: :obj:`string`
 :param transaction_uuid: A string used to match the catalog with the
 corresponding report that was issued during
 the same puppet run
 :type transaction_uuid: :obj:`string`

 :ivar node: :obj:`string` Name of the host
 :ivar version: :obj:`string` Catalog version from Puppet
 (unique for each node)
 :ivar transaction_uuid: :obj:`string` used to match the catalog with
 corresponding report
 :ivar edges: :obj:`list` of :obj:`Edge` The source Resource object\
 of the relationship
 :ivar resources: :obj:`dict` of :obj:`Resource` The source Resource\
 object of the relationship
 """
 def __init__(self, node, edges, resources,
 version, transaction_uuid):

 self.node = node
 self.version = version
 self.transaction_uuid = transaction_uuid

 self.resources = dict()
 for resource in resources:
 if 'file' not in resource:
 resource['file'] = None
 if 'line' not in resource:
 resource['line'] = None
 identifier = resource['type']+'['+resource['title']+']'
 res = Resource(node, resource['title'],
 resource['type'], resource['tags'],
 resource['exported'], resource['file'],
 resource['line'], resource['parameters'])
 self.resources[identifier] = res

 self.edges = []
 for edge in edges:
 identifier_source = edge['source']['type'] + \
 '[' + edge['source']['title'] + ']'
 identifier_target = edge['target']['type'] + \
 '[' + edge['target']['title'] + ']'
 self.edges.append(Edge(self.resources[identifier_source],
 self.resources[identifier_target],
 edge['relationship']))

 self.__string = '{0}/{1}'.format(self.node, self.transaction_uuid)

 def __repr__(self):
 return str('<Catalog: {0}>').format(self.__string)

 def __str__(self):
 return str('{0}').format(self.__string)

 def __unicode__(self):
 return self.__string

 def get_resources(self):
 return self.resources.itervalues()

 def get_edges(self):
 return iter(self.edges)

[docs]class Edge(object):
 """
 This object represents the connection between two Resource objects

 :param source: The source Resource object of the relationship
 :type source: :obj:`Resource`
 :param target: The target Resource object of the relationship
 :type target: :obj:`Resource`
 :param relaptionship: Name of the Puppet Ressource Relationship
 :type relationship: :obj:`string`

 :ivar source: :obj:`Resource` The source Resource object
 :ivar target: :obj:`Resource` The target Resource object
 :ivar relationship: :obj:`string` Name of the Puppet Resource relationship
 """
 def __init__(self, source, target, relationship):
 self.source = source
 self.target = target
 self.relationship = relationship
 self.__string = '{0} - {1} - {2}'.format(self.source,
 self.relationship,
 self.target)

 def __repr__(self):
 return str('<Edge: {0}>').format(self.__string)

 def __str__(self):
 return str('{0}').format(self.__string)

 def __unicode__(self):
 return self.__string

 © Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pypuppetdb 0.1.0 documentation »

 All modules for which code is available

		pypuppetdb

		pypuppetdb.api

		pypuppetdb.api.v2

		pypuppetdb.api.v3

		pypuppetdb.errors

		pypuppetdb.types

		pypuppetdb.utils

 © Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

_modules/pypuppetdb/utils.html

 Navigation

 		
 index

 		
 modules |

 		pypuppetdb 0.1.0 documentation »

 		Module code »

 		pypuppetdb »

 Source code for pypuppetdb.utils

from __future__ import unicode_literals
from __future__ import absolute_import

import warnings
import datetime

A UTC class, see:
http://docs.python.org/2/library/datetime.html#tzinfo-objects
[docs]class UTC(datetime.tzinfo):
 """UTC"""

 def utcoffset(self, dt):
 return datetime.timedelta(0)

 def tzname(self, dt):
 return str('UTC')

 def dst(self, dt):
 return datetime.timedelta(0)

 def __repr__(self):
 return str('<UTC>')

 def __str__(self):
 return str('UTC')

 def __unicode__(self):
 return 'UTC'

[docs]def json_to_datetime(date):
 """Tranforms a JSON datetime string into a timezone aware datetime
 object with a UTC tzinfo object.

 :param date: The datetime representation.
 :type date: :obj:`string`

 :returns: A timezone aware datetime object.
 :rtype: :class:`datetime.datetime`
 """
 return datetime.datetime.strptime(date, '%Y-%m-%dT%H:%M:%S.%fZ').replace(
 tzinfo=UTC())

 © Copyright 2013, 2014, Daniele Sluijters.
 Created using Sphinx 1.2.

_modules/pypuppetdb.html

 Navigation

 		
 index

 		
 modules |

 		pypuppetdb 0.1.0 documentation »

 		Module code »

 Source code for pypuppetdb

from __future__ import unicode_literals
from __future__ import absolute_import

"""
pypuppetdb PuppetDB API library
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

pypuppetdb is a library to work with PuppetDB's REST API. It provides a way
to query PuppetDB and a set of additional methods and objects to make working
with PuppetDB's API and the responses easier:

    >>> from pypuppetdb import connect
    >>> db = connect()
    >>> nodes = db.nodes()
    >>> print(nodes)
    <generator object 'nodes'>
    >>> for node in nodes:
    >>>   print(node)
    host1
    host2
    ...

This will return a generator object yielding Node objects for every returned
node from PuppetDB.

To query a single node the singular db.node() can be used:

   >>> node = db.node('hostname')
   >>> print(node)
   hostname

The Node objects are a bit more special in that they can query for facts and
resources themselves. Using those methods from a node object will automatically
add a query to the request scoping the request to the node.

   >>> node = db.node('hostname')
   >>> print node.fact('osfamily')
   osfamily/hostname

We can also query for facts:

   >>> facts = db.facts('osfamily')
   >>> print(facts)
   <generator object 'facts')
   >>> for fact in facts:
   >>> print(fact)
   osfamily/host1
   osfamily/host2

That querries PuppetDB for the 'osfamily' fact and will yield Fact objects,
one per node this fact is found on.

   >>> resources = db.resources('file')

Will return a generator object containing all file resources you're managing
across your infrastructure. This is probably a bad idea if you have a big
number of nodes as the response will be huge.
"""
import logging

from pypuppetdb.api import v2
from pypuppetdb.api import v3
from pypuppetdb.errors import UnsupportedVersionError

try:  # Python 2.7+
    from logging import NullHandler
except ImportError:  # pragma: notest
    class NullHandler(logging.Handler):
        def emit(self, record):
            pass

logging.getLogger(__name__).addHandler(NullHandler())


def connect(api_version=3, host='localhost', port=8080, ssl_verify=False,
            ssl_key=None, ssl_cert=None, timeout=10):
    """Connect with PuppetDB. This will return an object allowing you
    to query the API through its methods.

    :param api_version: Version of the API we're initialising.
    :type api_version: :obj:`int`

    :param host: (optional) Hostname or IP of PuppetDB.
    :type host: :obj:`string`

    :param port: (optional) Port on which to talk to PuppetDB.
    :type port: :obj:`int`

    :param ssl: (optional) Talk with PuppetDB over SSL.
    :type ssl: :obj:`bool`

    :param ssl_key: (optional) Path to our client secret key.
    :type ssl_key: :obj:`None` or :obj:`string` representing a filesystem\
            path.

    :param ssl_cert: (optional) Path to our client certificate.
    :type ssl_cert: :obj:`None` or :obj:`string` representing a filesystem\
            path.

    :param timeout: (optional) Number of seconds to wait for a response.
    :type timeout: :obj:`int`

    :raises: :class:`~pypuppetdb.errors.UnsupportedVersionError`
    """
    if api_version == 3:
        return v3.API(host=host, port=port,
                      timeout=timeout, ssl_verify=ssl_verify, ssl_key=ssl_key,
                      ssl_cert=ssl_cert)
    if api_version == 2:
        return v2.API(host=host, port=port,
                      timeout=timeout, ssl_verify=ssl_verify, ssl_key=ssl_key,
                      ssl_cert=ssl_cert)
    else:
        raise UnsupportedVersionError





          

      

      

    


    
        © Copyright 2013, 2014, Daniele Sluijters.
      Created using Sphinx 1.2.
    

  

_modules/pypuppetdb/errors.html


    
      Navigation


      
        		
          index


        		
          modules |


        		pypuppetdb 0.1.0 documentation »


          		Module code »


          		pypuppetdb »

 
      


    


    
      
          
            
  Source code for pypuppetdb.errors

[docs]class APIError(Exception):
    """Our base exception the other errors inherit from."""
    pass



[docs]class ImproperlyConfiguredError(APIError):
    """This exception is thrown when the API is initialised
    and it detects incompatbile configuration such as SSL turned
    on but no certificates provided."""
    pass



[docs]class EmptyResponseError(APIError):
    """Will be thrown when we did recieve a response but the
    response is empty."""
    pass



[docs]class UnsupportedVersionError(APIError):
    """Triggers when using the :func:`connect` function and
    providing it with an unknown API version."""
    pass



[docs]class DoesNotComputeError(APIError):
    """This error will be thrown when a function is called with
    an incompatible set of optional parameters. This is the 'you are
    being a naughty developer, go read the docs' error.
    """
    pass






          

      

      

    


    
        © Copyright 2013, 2014, Daniele Sluijters.
      Created using Sphinx 1.2.
    

  

_static/down.png





_static/file.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		pypuppetdb 0.1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2013, 2014, Daniele Sluijters.
      Created using Sphinx 1.2.
    

  

_static/up-pressed.png





_static/comment-close.png





_static/minus.png





_static/down-pressed.png





_static/comment-bright.png





